Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jia-Ming Li, Guo-Ping Yong, Zhao-Peng Yu and
 Zhi-Yong Wang*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China

Correspondence e-mail: gpyong@ustc.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.079$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Hexakis[μ-9-methyl-3-(1H-tetrazol-5-io)-4H-pyrido[1,2-a]pyrimidin-4-onato(2-)]tricadmium(II)

The centrosymmetric molecule of the title $\mathrm{Cd}^{\mathrm{II}}$ complex, $\left[\mathrm{Cd}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{6} \mathrm{O}\right)_{6}\right]$, is located on a threefold axis. The pyridopyrimidine ligands bridge neighbouring Cd atoms, forming a trinuclear complex. $\pi-\pi$ Stacking is observed between neighbouring complex molecules.

Comment

Recent developments in polynuclear cadmium complexes concern their interesting topologies and properties (Zheng et al., 2003; Bu et al., 2005; Chandrasekhar et al., 2005; Liu, 2005; Yong et al., 2005). We present here the structure of the title trinuclear $\mathrm{Cd}^{\mathrm{II}}$ complex incorporating a tetrazole ligand, $\left.\left[\mathrm{Cd}_{3} \text { (pemirolast }\right)_{6}\right]$ [pemirolast $=9$-methyl-3-($1 H$-tetrazol-5-io)-4H-pyrido[1,2-a]pyrimidin-4-one, which is an anti-allergic drug], (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The trinuclear molecule has a threefold axis of symmetry with three Cd atoms located on the threefold axis. The central Cd1 atom is also located on an inversion centre and coordinated by six N atoms from six pemirolast ligands, with the $\mathrm{Cd} 1-\mathrm{N}$ bond length of 2.335 (2) \AA; the bond angles around the Cd1 centre are close to 90°, showing an almost ideal octahedral geometry. The terminal Cd 2 atom is coordinated by three N atoms and three O atoms from three pemirolast ligands, with the $\mathrm{Cd} 2-\mathrm{N}$ and $\mathrm{Cd} 2-\mathrm{O}$ bond lengths of 2.294 (2) and 2.351 (2) \AA, respectively. Atom Cd 2 has a slightly distorted octahedral coordination geometry (Table 1). In the trinuclear units, all of the pemirolast ligands adopt an O, N, N-tridentate chelatingbridging coordination mode, using the tetrazole groups to bridge adjacent Cd atoms, giving rise to the trinuclear complex.

The C2-containing pyridopyrimidine is nearly parallel with the C^{i}-containing one [symmetry code: (i) $2-x, 1-x+y, \frac{1}{2}-$

Received 20 December 2005
Accepted 12 January 2006
z], the dihedral angle being 4.89 (11) ${ }^{\circ}$ (Fig. 2). The distances of atoms on the C2-pyridoperimidine from the mean plane of the C2 ${ }^{\text {i}}$-pyridoperimidine are 3.294 (3) (C5), 3.409 (3) (C6), 3.392 (3) (C8) and 3.272 (3) A (N6). These clearly suggest the existence of $\pi-\pi$ stacking in the crystal structure of (I).

Experimental

A mixture of $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol})$ and the potassium salt of 9-methyl-3-(1 H-tetrazol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one $(0.10 \mathrm{mmol})$ was placed in a heavy-walled Pyrex tube containing pyridine (0.05 ml), ethanol (0.30 ml) and $\mathrm{H}_{2} \mathrm{O}(0.10 \mathrm{ml})$. The tube was frozen in liquid N_{2}, sealed under vacuum, and then heated at 393 K for 2 d . Caution: $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is potentially explosive and should be used with care. Colourless crystals suitable for X-ray diffraction analysis were collected, washed with ethanol, and dried in air.

Crystal data

$\left[\mathrm{Cd}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{6} \mathrm{O}\right)_{6}\right]$
Mo $K \alpha$ radiation
$M_{r}=1700.53$
Trigonal, $R \overline{3} c$
$a=18.302$ (3) \AA
$c=31.099$ (6) \AA
$V=9021(3) \AA^{3}$
$Z=6$
$D_{x}=1.878 \mathrm{Mg} \mathrm{m}^{-3}$
Cell parameters from 15120
reflections
$\theta=1.8-28.3^{\circ}$
$\mu=1.14 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.44 \times 0.39 \times 0.30 \mathrm{~mm}$

Data collection

Siemens SMART CCD
diffractometer
φ and ω scans
Absorption correction: none
15306 measured reflections
2466 independent reflections

Refinement

Refinement on F^{2}
1874 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-24 \rightarrow 18$
$k=-10 \rightarrow 24$
$l=-40 \rightarrow 40$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.079$
$S=0.99$
2466 reflections
160 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0385 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.88$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.66 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cd} 1-\mathrm{N} 2$	$2.335(2)$	$\mathrm{Cd} 2-\mathrm{O} 1$	$2.3514(19)$
$\mathrm{Cd} 2-\mathrm{N} 1$	$2.294(2)$		

Aromatic H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$, and refined in the riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, the torsion angles refined, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

Figure 1
The molecular structure of (I) with 50% probability displacement ellipsoids [symmetry codes: (A) $-y, x-y, z$; (B) $-x+y,-x, z ;$ (C) $-x$, $-y,-z]$. H atoms have been omitted for clarity.

Figure 2
A diagram showing the $\pi-\pi$ stacking [symmetry code: (i) $2-x, 1-x+y$, $\left.\frac{1}{2}-z\right]$.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We are grateful for financial support from NSFC (No. 20472078).

References

Bruker (1998). SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X.-H., Tong, M.-L., Li, J.-R., Chang, H.-C., Li, L.-J. \& Kitagawa, S. (2005). CrystEngComm, 7, 411-416.
Chandrasekhar, V., Azhakar, R., Zacchini, S., Bickley, J. F. \& Steiner, A. (2005). Inorg. Chem. 44, 4608-4615.

Liu, X.-W. (2005). Acta Cryst. E61, m1777-m1778.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yong, G.-P., Qiao, S., Wang, Z.-Y. \& Cui, Y. (2005). Inorg. Chim. Acta, 358, 3905-3913.
Zheng, S.-L., Zhang, J.-P., Chen, X.-M., Huang, Z.-L., Lin, Z.-Y. \& Wong, W.-T. (2003). Chem. Eur. J. 9, 3888-3896.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

